Сколько золота в морской соли. Амальгамация морской воды, для извлечения золота

Во второй половине XIX века в составе морской воды впервые обнаружили золото. Правда, в столь мизерных количествах, что начавшиеся разговоры о добыче золота из океана быстро заглохли.

Вскоре ученые обнаружили, что некоторые соединения тяжелых металлов могут осаждать золото из растворов. Особенно интенсивно «усваивало» желтый металл сернистое железо — пирит.

Вот тогда-то и попробовали за кормой кораблей буксировать мешки с рудой. По возвращении из плавания в пирите находили повышенное содержание золота.

В 1902 году известный шведский ученый Сванте Аррениус определил общее количество золота в Мировом океане. По его подсчетам получилось 8 миллиардов тонн. Сегодня мы знаем, что данные Аррениуса сильно преувеличены, однако точных данных пока нет.

Споры о среднем содержании золота в морской воде время от времени вспыхивают вновь. Ученые по-разному оценивают содержание этого металла в морской воде. Причем бывают расхождения в несколько порядков.

Разработанный и освоенный в последние годы нейтронно-активационный метод тонкого анализа состава жидкостей позволил провести интересные исследования. Сотрудники научно-исследовательского судна «Михаил Ломоносов» вели исследования именно этим способом.

Бороздя тропические зоны Атлантического океана, они сделали 89 проб морской воды на золото, взятых в самых разных точках и на разной глубине, даже с глубины более пяти километров.

Осаждают специальными реактивами, осадок помещают в ядерный реактор. Облученные там потоком нейтронов, элементы начинают излучать гамма-лучи - подают «голос». По характеристикам этого наведенного излучения можно определить содержание золота в пробе.

По данным «Михаила Ломоносова», средняя концентрация драгоценного металла в морской воде значительно выше ранее установленной. В некоторых пробах золота оказалось почти в тысячу раз больше, чем можно было ожидать.

Это убедительно подтверждает высказанное ранее предположение о том, что в разных местах и на разных глубинах содержание золота меняется очень значительно. До сих пор сам факт существования зон с высокой концентрацией золота подвергался сомнению.

Объяснить причины таких аномалий ученые пока не берутся. Можно, конечно, вспомнить, что на участках золоторудных месторождений подземные воды содержат в сотни раз больше золота, чем в других местах.

Данные «Михаила Ломоносова», по выражению академика А. П. Виноградова, могут вновь «возбудить страсти в связи с золотом в морской воде». Сами исследователи считают, что необходима большая и систематическая работа, которая имеет не только естественнонаучный интерес, но, возможно, будет иметь и практическое значение. Достоверное выявление зон повышенных концентраций золота, причин их образования и условий устойчивого существования может вновь поставить вопрос об извлечении золота из морской воды.

Уран, золото, литий - в соленой воде растворены миллиарды тонн ценного сырья. Раньше процесс извлечения полезных веществ из воды был необычайно трудоёмким. Теперь исследователи собираются, наконец, извлечь этот клад из морских пучин.

16 05 2016
14:18

В океанах хранятся приблизительно четыре миллиарда тонн урана и десятки тысяч килограммов золота

Море это золотой рудник. Во всяком случае, если вы знаете, где нужно искать. Обычно один литр морской воды содержит всего несколько миллиардных долей грамма золота. Но недавно исследователи из Германии и Исландии обнаружили кипящий золотоносный источник: на исландском полуострове Рейкьянес. Там, концентрация золота в полмиллиона раз выше, чем в обычной морской воде.

Не только этот драгоценный металл, но и другие ценные вещества в огромных количествах растворены в морской воде. В море покоятся коло четырех миллиардов тонн урана. Этого достаточно, чтобы удовлетворять энергетические потребности человечества в течение 10000 лет. Или, например, литий: Этот редкоземельный химический элемент используется для батарей в планшетах или смартфонах. Все больше и больше стран инвестируют в изучение того, как можно использовать океаны в качестве нового источника ресурсов. Но нужно понимать, что вылавливание сырья из воды задачка далеко не тривиальная.

В Германии Центр океанических исследований имени Гельмгольца (Geomar) в Киле участвовал в открытии месторождений золота в горячих источниках в Исландии. "Измеренные концентрации достаточно точно указывают на значительные месторождения золота", − говорит Марк Ханнингтон, руководитель рабочей группы по разведке морских ресурсов Geomar.

Команда считает, что геотермальные резервуары полуострова Рейкьянес содержат, по меньшей мере, 10000 кг золота. Исследователи предполагают, что растворённое в морской воде и циркулирующее в подземных скальных расщелинах золото должно было накапливаться в течение длительных периодов, прежде чем оно покинуло подземный резервуар, а затем в очень высокой концентрации вылилось через скважины.

Золотые микробы

"Это золото может появляться в жидкостях в виде тонкодисперсных наночастиц золота", − предполагает Дитер Гарбе-Шенберг из Университета Киля. Так называемое нано золото пользуется спросом во многих областях техники. Его особые поверхностные свойства могут, например, обеспечить более эффективное управление химическими реакциями в катализаторах.

Но как можно извлечь из воды настолько мелко измельчённое золото, да ещё, чтобы этот процесс был незатратным, простым и экологически чистым? Молодых исследователей из Гейдельбергского университета и из немецкого научно-исследовательского Центра по изучению рака посетила гениальная идея. Для того чтобы заставить золото из раствора выпасть в осадок, они используют свойства специально адаптированных бактерий.

Delftia acidovorans, так называется микроб, который растет только на золотых рудниках. Этот микроорганизм адаптировался к окружающей среде, он отделяет драгоценный металл даже из растворов с относительно низкой концентрацией золота. Исследователи идентифицировали необходимые гены и встроили их в микроб Е. coli, который распространен по всему миру.

Это позволило им повторно извлечь драгоценный металл из золотоносных растворов, которые получаются, например, при извлечении золота из электронного лома. Исследователи подали заявку на патент этих биотехнологических процессов, так как они уже продемонстрировали высокую конкурентоспособность по сравнению с классической химической переработкой золота. Это открытие также может сотворить революцию в сфере добычи золота из моря.

Миллиарды тонн урана

Соединенные Штаты, тем временем, оказывают содействие крупной научно-исследовательской программе по добыче урана из океанов. Огромные растворенные в воде запасы происходят из природных минералов, которые были вымыты в море в ходе выветривания и других эрозивных процессов. Тем не менее: уран нелегко выловить из воды. Ещё в 80-х годах японские ученые экспериментировали с материалами, которые целенаправленно захватывают и связывают уран из морской воды.

Американцы пытаются сделать этот метод более эффективным. Исследовательский консорциум хочет в буквальном смысле вылавливать уран удочкой. В журнале "Industrial and Chemical Engineering Research" впервые на рассмотрение публики были представлены материалы и описание самого метода. Этот метод, вероятно, сможет уменьшить в три-четыре раза себестоимость добычи урана из моря, и при этом увеличить объёмы добываемого сырья.

"Для того, чтобы обеспечить будущее ядерной энергетики, нам нужно найти экономически жизнеспособный и надежный источник добычи топлива", − объясняет Филипп Бритт, директор программы в Департаменте энергетики США. Метод главным образом разрабатывается на основе двух государственных научно-исследовательских институтов, Национальной лаборатории Ок-Ридж (Oak Ridge) в штате Теннесси и Национальной лаборатории Пасифик Норсвест (Pacific Northwest) в Ричланде.

В качестве "удочек (улавливателей) для урана" служат длинные нити (шнуры) полиэтиленовых волокон. Тонкие, но стабильные волокна специально обрабатывают так, что в процессе часть их молекул преобразуются в амидоксим. Это органическое соединение, состоящее из углерода и азота, является "приманкой" для растворенного в воде урана, так как он предпочтительно создает соединения именно с этим веществом.

Воздействие на окружающую среду

Для того чтобы "поймать" уран, шнуры нужно просто поместить в море, предпочтительно в ту область водных масс, где есть течение и происходит перемешивание. Через несколько недель, ураноносные шнуры можно извлекать. Их помещают в кислотную ванну, где уран высвобождается в виде уранила. Соединение может быть легко извлечено из раствора, а затем его можно без труда обогатить и переработать в уран. Урановая "удочка" без проблем переносит эту процедуру и, по мнению исследователей, может быть повторно использована непосредственно снова в океане.

Сколько урана можно добыть из моря ​​таким способом, уже продемонстрировали тесты в трех различных местах на Западном побережье США, во Флориде и на побережье штата Массачусетс. После 49 дней пребывания в морской воде, шнуры выловили и связали около шести граммов урана на килограмм абсорбирующего материала. Японские исследователи в свое время смогли добиться результата в два грамма урана на килограмм абсорбирующего материала. И при этом пластиковые шнуры японцев должны были оставаться в воде на протяжении 60 дней.

"Решающее значение имеет понимание того, как абсорбирующий материал работает в естественных условиях в морской воде", − говорит Гари Гилл, заместитель директора Национальной лаборатории Pacific Northwest. Потому что в дополнение к максимально возможным показателям добычи урана должно быть гарантировано, что этот метод не оказывает отрицательного воздействия на окружающую среду. "Но мы уже выяснили, что большинство из этих абсорбирующих материалов не токсичны", − говорит Гилл.

Команда уже пять лет работает над усовершенствованием метода. Всё началось с моделирования на компьютере. Программа проверяла, какие из химических групп выборочно улавливают и связывают именно уран. Затем последовали термодинамические и кинетические исследования, которые определили, как быстро уран из воды связывается с тем или иным абсорбирующим веществом и где находится равновесие этой реакции. Весь процесс функционирует только тогда, когда связывается больше урана, чем растворяется.

Литий для батарей

К проекту также были привлечены Китайская академия наук и Японское агентство по атомной энергии (ЯААЭ). В Институте синтеза Роккасё (Rokkasho Fusion Institute), который является частью Японского агентства по атомной энергии, японские исследователи продолжают изучение технических способов добычи стратегически важного сырья из морской воды.

К таким веществам относится литий, металл, который входит в число редкоземельных химических элементов. Он необходим в первую очередь для изготовления компактных литий-ионных батарей, которые сейчас распространены в планшетах, цифровых камерах и мобильных телефонах, а также используются для эффективного хранения энергии в электрических автомобилях.

В то время как известные, доступные месторождения лития в мире оцениваются примерно в 50 млн тонн, ученые подозревают, что в водных ресурсах океанов могут быть растворены 230 миллиардов тонн лития. Тем не менее, сырье встречается только в качестве микроэлемента. Около 150 000 литров морской воды едва ли содержат хотя бы 30 граммов лития.

Но Цуёши Хосино из Института синтеза Роккасё это совершенно не смущает. Ученый только что представил общественности метод, с помощью которого требуемый металл может быть отфильтрован из воды, даже если он присутствует там в очень небольших количествах. Этот метод не требует дополнительного использования энергии, ведь её приносят сами электрически заряженные частицы лития.

В фильтре, состоящем из тонкой мембраны из стеклокерамики, которая обладает литиевой ионной проводимостью, заряженные частицы двигаются от отрицательной стороны к положительной стороне, таким образом, производя электрическое напряжение. "Микропористая керамика пропускает через себя только растворённые в морской воде электрически заряженные частицы лития", − объясняет исследователь. В 72-часовом испытании фильтр достиг доли восстановления, которая составляет около семи процентов.

Исследователи знают, что это только начало. Эксперты из Центра энергетических исследований Великобритании предполагают, что в 2030 году такими методами можно будет получать сырье из моря в коммерческих объёмах, при условии, что цены на золото, уран или литий останутся достаточно высокими.

Сильвия фон дер Вайден.

Несмотря на то,что в морской воде золото содержится в микроскопических количествах (4мг/тонна) добывать его в скоро времени будет выгодно. В самом деле,если мы посмотрим как растет количество отходов человечества, то станет очевидно, что полная их переработка в готовые изделия затруднена. В тоже время использование использование продуктов утилизации отходов для извлечения извлечения золота и других металлов представляется выгодным.

Американский исследователь Генри Балл более 30 лет назад установил, что в морской воде золото содержится в виде иодида. Иодид золота (AuI) твердое вещество лимонно-желтого цвета с плотностью равна 8,25 г/см3. Разлагается на элементы при нагревании до 177°С или под действием воды. Восстанавливается диоксидом серы или монооксидом углерода до золота. Присоединяет аммиак. Получают непосредственно из элементов при 100°С, восстановлением Au2Cl6 или H раствором КI, действием иодоводородной кислоты на оксид золота (III).

В результате исследований, Балл предложил извлекать золото из морской воды с помощью негашеной извести. По его расчетам, на 4,5 тыс.тонн воды требуется всего 1 тонна извести.Принцип действия установки Балла был прост.Во время прилива морская вода поступает в бассейн,где смешивается с известковым молоком.Через определенный промежуток времени, уже будучи "отработанной", через сливную трубу она сбрасывается обратно в море.Остающийся осадок на дне осадок перекачивается в отстойник, откуда транспортируется к месту переработки для извлечения золота.

Кировский инженер Русских В.И. предложил еще более дешевый и безотходный способ извлечения золота. Для извлечения золота он предлагает использовать вместо негашеной извести золу тепловых электростанций. Зола-уноса тепловых электростанций содержит не менее 10% негашеной извести, поэтому для обработки 4,5 тысяч тонн морской воды потребует примерно 10 тонн золы.В настоящее время отвалы золы от тепловых электростанций составляют более 10 млрд.тонн. Зола-уноса используется очень плохо.

Для реализации этого способа требуются многомиллионные вложения в строительство бетонной плотины, а также укладки труб для отвода обработанной воды в море.
Простой расчет показывает, что использование данного метода в тысячу раз менее затратно, чем другие способы извлечения золота из воды. Кроме того, уже в настоящее время этот способ легко окупит себя в течение года. Даже при условии, 20% извлечения золота из морской воды. В случае попутного извлечения из морской воды редких,благородных и рассеянных металлов, время окупаемости сократится в несколько раз.

Наиболее сложным в этом способе, это выбор места строительства затопляемого бассейна.
Идеальное место должно быть расположено недалеко от водных течений, с регулярными приливами и отливами, берег должен быть из твердых пород (например,гранита, известняка и т.п.), вдалеке от населенных пунктов, рядом с железнодорожными путями.

Выполнение этих требований позволит снизить стоимость сооружения бассейна.

Общее количество золота в водах Мирового океана оценивается в 25-27 млн.т. Это чрезвычайно много. Человечеством за все время добыто около 150 тыс.т.

В Мировом океане растворено 10 10 тонн различных веществ, все , известные в земной коре. Только Гольфстрим переносит в секунду 3 миллиона тонн различных солей. В далеком прошлом получали из моря примерно так же, как и сегодня, - выпариванием . Применяя сложную технологию, извлекают натрий, калий, хлор, магний, кальций, бром, литий.

Получение золота

Давно человек мечтал добывать золото из морской воды. И это казалось настолько реальным, что Германия собралась оплатить репарации первой мировой войны «морским» золотом. Этим занялся лауреат Нобелевской премии Ф. Габер. Однако несмотря на то что судно было хорошо оснащено, а экспедиция прекрасно субсидирована и подготовлена, из этого ничего не получилось: все извлеченное из морской воды золото было оценено в 0,0001 доллара, то есть из 15 тонн воды получено всего лишь 0,09 миллиграмма .

Советский ученый А. Даванков на судне «Михаил Ломоносов» при помощи ионитовой колонны из 500 тонн воды получил миллиграмм золота. Это, конечно, мало, но кораблей много, так что дело за установкой сменных ловушек. Природные сорбенты - илы - уже проделали аналогичную работу. В донных осадках Красного моря ил содержит 5 граммов золота на тонну осадка. Судя по всему, в мировом океане растворено свыше 10 миллионов тонн золота. Это уже значительно. Однако это не все золото, поступившее с материков. Так, пресные воды некоторых рек содержат до 16 кларков золота. Где же оно? В илах прибрежных осадков? Если это так, то такие месторождения можно обнаружить.

Золотоносность океанической воды оценивают по-разному: по С. Арренису (1902 год) золота содержится 6 миллиграммов на тонну, по Г. Путнаму (1953 год) 0,03-44, а по данным 1974 года 0,04-3,4 микрограмма на литр. Установлено состояние металла в : суспензии микрочастиц, коллоиды, комплексные ионы AuCI 2 и AuCI 4 , золотоорганические соединения.

Как пытались извлекать золото? Способов много: буксировали за кораблем мешки с пиритом; семь граммов освинцованных цинковых стружек омывали 550 литрами воды и получили 0,6 миллиграмма золота и 1,1 миллиграмма серебра; использовали в качестве поглотителя цеолиты, пермутиты, кокс, шлак, цементный клинкер, древесный уголь, торф, древесную муку, сульфитную целлюлозу, стеклянный порошок, сульфид свинца, коллоидную серу, металлическую ртуть, гидроокись магния (В 1925 году в Одессе было извлечено 5 миллиграммов золота из 2 тонн воды), ионообменные смолы (А. Даванков, 1956 год). Однако золото продолжает интересовать человека. В морской воде на 11 главных ионов (СI — , SO 2\4 , НСО 3 — , СО 2\3- , Вг — , F — , Н 2 ВО 3- , Nа + , Са 2+ , К +) приходится 99,99 процента. Естественно эти сведения довольно приблизительные. На самом деле, морская вода представляет собой сложный комплекс ионных и коллоидных растворов, минеральных взвесей, газов, органических остатков, . Кроме того, на состав морской воды влияют отходы производства. Так, содержание свинца выросло в 10 раз за последние полвека. Появились особые районы - «оазисы металлов».

Добыча прочих металлов

В 1948 году шведское судно «Альбатрос» обнаружило в Красном море донные источники горячих металлоносных рассолов. Детальными работами, проводимыми на судне «Дискавери», в 1966 году установлены три крупные впадины глубиной более 2 километров, где встречены рассолы с температурой до 56°С и концентрацией солей 26 процентов.

В пласте мощностью 200 метров во впадинах Атлантис II, Чейн и Дискавери в десятки тысяч раз повышены содержания железа, марганца, цинка, свинца, меди, золота, серебра, индия, кобальта, кадмия, мышьяка, ртути. На дне впадин в осадках обнаружены высокие концентрации сульфидов. Эти осадки подстилаются безрудными карбонатными породами, под которыми залегают базальты. Начало отложения руд - 13 тысяч лет назад. Установлено, что с 1964 года рассолов повышается. Так, в 1973 году она достигла 62° С.

Рудоносные илы уже оценены в кубометрах, в тоннах и в долларах, но до практического использования месторождении необычного типа, видимо, далеко. В на площади свыше 2 миллионов квадратных километров также установлены металлоносные осадки, связанные с зонами разломов и подводными вулканами. Их практическое значение пока неясно.

По самым оптимистическим подсчетам запасов урана на суше около 5 миллионов тонн (без стран СНГ), а в Мировом океане содержится 4 миллиарда тонн этого элемента.

Поиски сорбентов некоторых металлов дали неожиданные результаты: гидроокись титана сорбирует хром (коэффициент накопления 1 миллион), ванадий (100 тысяч), марганец, железо, медь, никель (10-100 тысяч). На ионитах сорбируется медь, а в опытах А. Даванкова и серебро (2,5 миллиграмма на 200 граммов сорбента). Уже испытаны сорбенты молибдена, цезия, тория, радия, рутения.

Оказалось, что полиэтиленовый сорбент осаждает за 20 дней 9/10 исходного количества индия, а хитозан (компонент панциря ракообразных и покрова членистоногих) сорбирует цинк, медь, кадмий, свинец и другие металлы. Интересно, что сама природа подсказывает метод технологии: ламинарии концентрируют йод и алюминий; радиолярии – стронций; – никель; омары и мидии – кобальт; осьминоги – медь; медузы – цинк, олово и свинец; голотурии – ванадий; некоторые вида оболочечников — тантал и ниобий. В асцидиях (подстил оболочечников) концентрация ванадия составляет 10 10 (металл входит в состав пигментной ). Япония отказалась от импорта ванадия так как стала получать его из моря, используя, асцидий.

Учеными многих стран исследовались генезис и топография распространения золота в морской воде, изыскивались методы его извлечения.

Золото было обнаружено в толще различных видов морских водорослей и в морских отложениях (на глубине 89-198,6 м), в прибрежных водах, в гейзерах штата Арканзас (США) и в морской воде. Содержание золота по различным определениям колебалось от 3 до 200 мг/т. Там же обнаружено и серебро.

Содержание золота в морской воде и методы его извлечения

По данным геохимиков, в одном литре морской воды содержится - 0,000004 миллиграмма растворенного золота, в одном кубическом километре - 0,004 тонны, во всем объеме Мирового океана более 6 миллионов тонн.

Извлечение золота можно производить фильтрованием морской воды через адсорбенты (угольную мелочь, соединения целлюлозы, пирит, сульфидные руды, пропитанную реагентами ветошь) с последующим их сжиганием или растворением.

  • осаждение химическими методами;
  • электролиз;
  • сорбция ионообменными смолами;
  • помещенными в специальный контейнер;
  • ионная флотация посредством специальных сетей;
  • пропитанных реагентами.

Попутное извлечение золота из морских россыпей

Практический интерес представляет попутное извлечение золота из титано-циркониевых прибрежных морских россыпей. Ценность и экономическая значимость прибрежных россыпей определяются не только крупными запасами рудных минералов, но и возможностью комплексного использования сырья.

При исследовании семи проб песков титаномагнетитовых морских россыпей Приморья установлено повышенное содержание золота. Кроме основных компонентов (ильменита, магнетита, рутила и циркона) могут извлекаться гранат, ставролит, кианит, дистен, силлиманит и др. Содержание ильменита по различным месторождениям колеблется от 0,6 до 19%, титаномагнетита от 1 до 28%.

Основная масса золота (95%) сосредоточена в классе -0,3 + + 0,1 мм. Связанное золото не обнаружено. Золото в основном тонкопластинчатое, чешуйчатое, в плане изометричное, овальное, удлиненное, реже - неправильных очертаний, совершенно окатанное, сильно истертое, глубоко измененное процессами коррозии. Лабораторными опытами установлено, что золото можно извлекать отсадочными машинами, хотя масса одной золотинки (чешуйки) из морской россыпи в пять раз меньше массы золотины той же крупности из речной россыпи. Извлечение золота отсадкой составляло из речной россыпи 84% и из морской - 67%. При перечистке хвостов извлечение золота повышается до 88%.


При исследовании песков одного из титано-циркониевых месторождений морского происхождения центрального района России установлено, что свободного золота содержится 29%, связанного с другими минералами - 71%. Проведенным минералогическим анализом установлено, что золото весьма мелкое и пылевидное, крупность золотин от 0,05 до 0,25 мм (преобладающая крупность -0,12 + 0,05 мм). Форма зерен золота комковидно-угловатая и пластинчатая. Золото в основном желтого цвета и только небольшая часть зеленовато-желтого. Поверхность большинства крупных золотинок изменена коррозией, некоторые из них покрыты тонкой пленкой гидроокислов железа, отдельные зерна окатанные. Проба золота по определению наиболее крупного слабокорродированного кристалла порядка 890.

Обработка титано-циркониевых песков в полупромышленных условиях производилась по схеме, включающей грохочение, дезинтеграцию, механическую оттирку, обесшламливание и флотацию. Селекция коллективного флотационного концентрата и доводка конечных концентратов проводились сочетанием магнитной и электрической сепараций с процессами флотации и гравитации на концентрационном столе. Наибольшая концентрация золота при этом наблюдалась в рутиловом концентрате и промпродуктах электро-сепарации немагнитной и магнитной фракций.

Заметная концентрация золота наблюдается также в цирконовом концентрате. Однако извлечение золота в эти продукты невысокое, а основное количество его теряется в кварцевых песках, по данным портала fishingby.com . Извлечение золота в коллективный флотационный концентрат составляет 22% от исходного или 75% от золота, находящегося в песках в свободной форме.

Опыт работы промышленных установок

На песках одной из россыпей Балтийского моря Московским горным институтом (МГИ) были проведены исследования на установке, смонтированной на борту земснаряда, для выяснения влияния морских волнений на процесс обогащения. На борту земснаряда были установлены гидроциклоны, струйные концентраторы и ленточный сепаратор трения. Два концентратора работали на основной операции с получением отвальных хвостов и черновых концентратов, которые перечищались на третьем концентраторе.

По схеме получается черновой концентрат с содержанием 45-60% тяжелой фракции и извлечением полезных минералов 81%. Результаты испытаний полностью подтвердили данные, полученные при обогащении морских песков на береговой установке.

Для доводки чернового концентрата в лабораторных условиях разработана схема с применением гравитации, магнитной и электрической сепараций с предварительным обжигом циркон-рутилового продукта. В дальнейшем в лабораторных условиях была разработана схема получения гравитационного концентрата с содержанием тяжелых минералов около 80-85%. Схема включала основную концентрацию песков на струйных концентраторах и четыре перечистки концентрата.

Освоение богатых подводных месторождений потребует меньших капиталовложений, чем разработка континентальных месторождений.