Энергия взаимодействия точечных зарядов формула. Потенциальная энергия взаимодействия электрических зарядов: система точечных зарядов; система заряженных проводников; энергия заряженного конденсатора

Потенциальная энергия взаимодействия системы точечных зарядов и полная электростатическая энергия системы зарядов

Анимация

Описание

Потенциальную энергию взаимодействия двух точечных зарядов q 1 и q 2 , находящихся в вакууме на расстоянии r 12 друг от друга можно вычислить по:

(1)

Рассмотрим систему, состоящую из N точечных зарядов: q 1 , q 2 ,..., q n .

Энергия взаимодействия такой системы равна сумме энергий взаимодействия зарядов взятых попарно:

. (2)

В формуле 2 суммирование производится по индексам i и k (i № k ). Оба индекса пробегают, независимо друг от друга, значения от 0 до N . Слагаемые, для которых значение индекса i совпадает со значением индекса k не учитываются. Коэффициент 1/2 поставлен потому, что при суммировании потенциальная энергия каждой пары зарядов учитывается дважды. Формулу (2) можно представить в виде:

, (3)

где j i - потенциал в точке нахождения i -го заряда, создаваемый всеми остальными зарядами:

.

Энергия взаимодействия системы точечных зарядов, вычисляемая по формуле (3), может быть как положительной, так и отрицательной. Например она отрицательная для двух точечных зарядов противоположного знака.

Формула (3) определяет не полную электростатическую энергию системы точечных зарядов, а только их взаимную потенциальную энергию. Каждый заряд q i , взятый в отдельности обладает электрической энергией. Она называется собственной энергией заряда и представляет собой энергию взаимного отталкивания бесконечно малых частей, на которые его можно мысленно разбить. Эта энергия не учитывается в формуле (3). Учитывается только работа затрачиваемая на сближение зарядов q i , но не на их образование.

Полная электростатическая энергия системы точечных зарядов учитывает также работу, на образование зарядов q i из бесконечно малых порций электричества, переносимых из бесконечности. Полная электростатическая энергия системы зарядов всегда положительная. Это легко показать на примере заряженного проводника. Рассматривая заряженный проводник как систему точечных зарядов и учитывая одинаковое значение потенциала в любой точке проводника, из формулы (3) получим:

Эта формула дает полную энергию заряженного проводника, которая всегда положительна (при q>0 , j >0 , следовательно W>0 , если q<0 , то j <0 , но W>0 ).

Временные характеристики

Время инициации (log to от -10 до 3);

Время существования (log tc от -10 до 15);

Время деградации (log td от -10 до 3);

Время оптимального проявления (log tk от -7 до 2).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Для наблюдения энергии взаимодействия системы зарядов достаточно подвесить на ниточках на расстоянии порядка 5 см друг от друга два легких проводящих шарика и зарядить их от расчески. Они отклонятся, то есть повысят свою потенциальную энергию в поле земного тяготения, что и делается за счет энергии их электростатического взаимодействия.

Применение эффекта

Эффект настолько фундаментален, что без преувеличения можно считать, что он применяется кв любой электротехнической и радиоэлектронной аппаратуре, использующий зарядовые накопители, то есть конденсаторы.

Литература

1. Савельев И.В. Курс общей физики.- М.: Наука, 1988.- Т.2.- С.24-25.

2. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.- С.117-118.

Ключевые слова

  • электрический заряд
  • точечный заряд
  • потенциал
  • потенциальная энергия взаимодействия
  • полная электрическая энергия

Разделы естественных наук:

Пусть два точечных заряда q 1 и q 2 находятся в вакууме на расстоянии r друг от друга. Можно показать, что потенциальная энергия их взаимодействия даётся формулой:

W = kq 1 q 2 /r (3)

Мы принимаем формулу (3) без доказательства. Две особенности данной формулы следует обсудить.

Во-первых, где находится нулевой уровень потенциальной энергии? Ведь потенциальная энергия, как видно из формулы (3), в нуль обратиться не может. Но на самом деле нулевой уровень существует, и находится он на бесконечности. Иными словами, когда заряды расположены бесконечно далеко друг от друга, потенциальная энергия их взаимодействия полагается равной нулю (что логично - в этом случае заряды уже «не взаимодействуют»). Во-вторых, q 1 и q 2 - это снова алгебраические величины зарядов, т.е. заряды с учётом их знака.

Например, потенциальная энергия взаимодействия двух одноимённых зарядов будет положительной. Почему? Если мы отпустим их, они начнут разгоняться и удаляться друг от друга.

Их кинетическая энергия возрастает, стало быть потенциальная энергия - убывает. Но на бесконечности потенциальная энергия обращается в нуль, а раз она убывает к нулю, значит - она является положительной.

А вот потенциальная энергия взаимодействия разноимённых зарядов оказывается отрицательной. Действительно, давайте удалим их на очень большое расстояние друг от друга - так что потенциальная энергия равна нулю - и отпустим. Заряды начнут разгоняться, сближаясь, и потенциальная энергия снова убывает. Но если она была нулём, то куда ей убывать? Только в сторону отрицательных значений.

Формула (3) помогает также вычислить потенциальную энергию системы зарядов, если число зарядов больше двух. Для этого нужно просуммировать энергии каждой пары зарядов. Мы не будем выписывать общую формулу; лучше проиллюстрируем сказанное простым примером, изображённым на рис. 8

Рис. 8.

Если заряды q 1 , q 2 , q 3 находятся в вершинах треугольника со сторонами a, b, c, то потенциальная энергия их взаимодействия равна:

W = kq 1 q 2 /a + kq 2 q 3 /b + kq 1 q 3 /c

Потенциал

Из формулы W = - qEx мы видим, что потенциальная энергия заряда q в однородном поле прямо пропорциональна этому заряду. То же самое мы видим из формулы W = kq 1 q 2 /r потенциальная энергия заряда q 1 , находящегося в поле точечного заряда q 2 , прямо пропорциональна величине заряда q 1 . Оказывается, это общий факт: потенциальная энергия W заряда q в любом электростатическом поле прямо пропорциональна величине q:

Величина ц уже не зависит от заряда, является характеристикой поля и называется потенциалом:

Так, потенциал однородного поля E в точке с абсциссой x равен:

Напомним, что ось X совпадает с линией напряжённости поля. Мы видим, что с ростом x потенциал убывает. Иными словами, вектор напряжённости поля указывает направление убывания потенциала. Для потенциала поля точечного заряда q на расстоянии r от него имеем:

Единицей измерения потенциала служит хорошо известный вам вольт. Из формулы (5) мы видим, что В = Дж / Кл.

Итак, теперь у нас есть две характеристики поля: силовая (напряжённость) и энергетическая (потенциал). У каждой из них имеются свои преимущества и недостатки. Какую именно характеристику удобнее использовать - зависит от конкретной задачи.

14) Потенциальная энергия заряда в электрическом поле. Работу, совершаемую силами электрического поля при перемещении положительного точечного заряда q из положения 1 в положение 2, представим как изменение потенциальной энергии этого заряда:

где Wп1 и Wп2 – потенциальные энергии заряда q в положениях 1 и 2. При малом перемещении заряда q в поле, создаваемом положительным точечным зарядом Q, изменение потенциальной энергии равно

При конечном перемещении заряда q из положения 1 в положение 2, находящиеся на расстояниях r1 и r2 от заряда Q,

Если поле создано системой точечных зарядов Q1, Q2,¼, Qn, то изменение потенциальной энергии заряда q в этом поле:

Приведённые формулы позволяют найти только изменение потенциальной энергии точечного заряда q, а не саму потенциальную энергию. Для определения потенциальной энергии необходимо условиться, в какой точке поля считать ее равной нулю. Для потенциальной энергии точечного заряда q, находящегося в электрическом поле, созданном другим точечным зарядом Q, получим

где C – произвольная постоянная. Пусть потенциальная энергия равна нулю на бесконечно большом расстоянии от заряда Q (при r ® ¥), тогда постоянная C = 0 и предыдущее выражение принимает вид

При этом потенциальная энергия определяется как работа перемещения заряда силами поля из данной точки в бесконечно удаленную. В случае электрического поля, создаваемого системой точечных зарядов, потенциальная энергия заряда q:

Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Qi (i = 1, 2, ... , n). Энергия взаимодействия всех n зарядов определится соотношением

где r i j - расстояние между соответствующими зарядами, а суммирование производится таким образом, чтобы взаимодействие между каждой парой зарядов учитывалось один раз.

Магнитные взаимодействия: опыты Эрстеда и Ампера; магнитное поле; сила Лоренца, индукция магнитного поля; силовые линии магнитного поля; магнитное поле, создаваемое движущимся с постоянной скоростью точечным зарядом.

Магнитное поле - силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения , магнитная составляющая электромагнитного поля

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Опыт Эрстеда показал, что электрические токи могут действовать на магниты, однако природа магнита в то время была совершенно таинственной. Ампер и другие вскоре открыли взаимодействие электрических токов друг с другом, проявляющееся, в частности, как притяжение между двумя параллельными проводами, по которым текут одинаково направленные токи. Это привело Ампера к гипотезе, что в магнитном веществе имеются постоянно циркулирующие электрические токи. Если такая гипотеза справедлива, то результат опыта Эрстеда можно объяснить взаимодействием гальванического тока в проволоке с микроскопическими токами, которые сообщают стрелке компаса особые свойства

Сила Лоренца - сила, с которой, в рамках классической физики, электромагнитное поледействует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу - со стороны электромагнитного поля вообще , иначе говоря, со стороны электрического и магнитного полей. Выражается в СИ как:

Для непрерывного распределения заряда, сила Лоренца принимает вид:

где d F - сила, действующая на маленький элемент dq .

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ - векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Более конкретно, - это такой вектор, что сила Лоренца , действующая со стороны магнитного поля на заряд , движущийся со скоростью , равна

где косым крестом обозначено векторное произведение, α - угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено поправилу буравчика).

Действие магнитных полей на электрические токи: закон Био-Савара-Лапласа-Ампера и его применение для расчета силы, действующей со стороны однородного магнитного поля на отрезок тонкого прямого проводника с током; формула Ампера и ее значение в метрологии.

Рассмотрим произвольный проводник,в котором протекают токи:

dF= *ndV=[ ]*dV

З-н Био-Савара-Ампера для объемного тока:dF=jBdVsin . dF перпендикулярно ,т.е . направленно к нам. Возьмем тонкий проводник: , тогда для линейного эл-а тока з-н запишется в виде: dF=I [ ], т.е. dF=IBdlsin .

Задача 1! Имеется однородное магнитное поле. В нем нах-я отрезок провода,который имеет l и I.

d =I [ ], dF=IBdlsin , F=IBsin =IBlsin -сила Ампера.

1 Ампер-сила тока,при протекании которого по 2 || длинным,тонким проводникам,находящимся на расстоянии 1 м друг от друга действует сила равная 2*10^-7 Н на каждый метр их длины.

Задача 2! Есть 2 || длинных проводника, где l>>d,тогда d = , d d , . Тогда ф-а Ампера: *l.

Магнитный диполь: физическая модель и магнитный момент диполя; магнитное поле, создаваемое магнитным диполем; силы, действующие со стороны однородного и неоднородного магнитных полей на магнитный диполь.

ДИПОЛЬ МАГНИТНЫЙ аналог диполя электрического, к-рый можно представлять себе как два точечных магн. заряда , расположенных на расстоянии l друг от друга. Характеризуется дипольным моментом, равным по величине и направленным от .

Поля, создаваемые равными Д. м. вне области источников в вакууме (или в любой иной среде, магн. проницаемость к-рой =1), одинаковы, однако в средах с совпадение достигается, если только принять, что , т. е. считать, что дипольный момент зарядового Д. м. зависит от проницаемости

38. Теорема Гаусса для магнитного поля: интегральная и дифференциальная формы, физический смысл теоремы. Релятивистский характер магнитного поля: магнитные взаимодействия как релятивистское следствие электрических взаимодействий; взаимные преобразования электрических и магнитных полей.

Отсутствие в природе магнитных зарядов приводит к тому, что линии вектора В не имеют ни начала, ни конца. Поток вектора В через замкнутую поверхность должен быть равен нулю. Таким образом, для любого магнитного поля и произвольной замкнутой поверхности S имеет место условие

Эта формула выражает теорему Гаусса для вектора В : поток вектора магнитной индукции через любую замкнутую поверхность равен нулю.

В интегральной форме

1. Поток вектора электрического смещения через любую замкнутую поверхность, окружающую некоторый объем, равен алгебраической сумме свободных зарядов, находящихся внутри этой поверхности

(Краткие теоретические сведения)

Энергия взаимодействия точечных зарядов

Энергия взаимодействия системы точечных зарядов равна работе внешних сил по созданию данной системы (см. рис.1) посредством медленного (квазистатического) перемещения зарядов из бесконечно удаленных друг от друга точек в заданные положения. Эта энергия зависит только от конечной конфигурации системы, но не от способа, каким эта система была создана.

Основываясь на таком определении, можно получить следующую формулу для энергии взаимодействия двух точечных зарядов, расположенных в вакууме на расстоянии r 12 друг от друга:

. (1)

Если система содержит три неподвижных точечных заряда, то энергия их взаимодействия равна сумме энергий всех парных взаимодействий:

где r 12 – расстояние между первым и вторым, r 13 - между первым и третьим, r 23 – между вторым и третьим зарядами. Аналогично вычисляется электрическая энергия взаимодействия системы из N точечных зарядов:

Например, для системы из 4-х зарядов формула (2) содержит 6 слагаемых.

Электрическая энергия заряженных проводников

Электрическая энергия уединенного заряженного проводника равна работе, которую нужно совершить, чтобы нанести на проводник данный заряд, медленно перемещая его бесконечно малыми порциями из бесконечности, где изначально эти порции заряда не взаимодействовали. Электрическую энергию уединенного проводника можно вычислить по формуле

, (3)

где q – заряд проводника,  - его потенциал. В частности, если заряженный проводник имеет форму шара и расположен в вакууме, то его потенциал
и, как следует из (3), электрическая энергия равна

,

где R – радиус шара, q – его заряд.

Аналогично определяется электрическая энергия нескольких заряженных проводников – она равна работе внешних сил по нанесению данных зарядов на проводники. Для электрической энергии системы из N заряженных проводников можно получить формулу:

, (4)

где и - заряд и потенциал - го проводника. Заметим, что формулы (3), (4) справедливы и в том случае, когда заряженные проводники находятся не в вакууме, а в изотропном нейтральном диэлектрике.

При помощи (4) вычислим электрическую энергию заряженного конденсатора . Обозначив заряд положительной обкладки q , ее потенциал  1 , а потенциал отрицательной обкладки  2 , получим:

,

где
- напряжение на конденсаторе. Учитывая, что
, формулу для энергии конденсатора можно представить также в виде

, (5)

где C – емкость конденсатора.

Собственная электрическая энергия и энергия взаимодействия

Рассмотрим электрическую энергию двух проводящих шаров, радиусы которых R 1 , R 2 , а заряды q 1 , q 2 . Будем считать, что шары расположены в вакууме на большом по сравнению с их радиусами расстоянии l друг от друга. В этом случае расстояние от центра одного шара до любой точки поверхности другого примерно равно l и потенциалы шаров можно выразить формулами:

,
.

Электрическую энергию системы найдем при помощи (4):

.

Первое слагаемое в полученной формуле – энергия взаимодействия зарядов, расположенных на первом шаре. Эту энергию называют собственной электрической энергией (первого шара). Аналогично, второе слагаемое – собственная электрическая энергия второго шара. Последнее слагаемое – энергия взаимодействия зарядов первого шара с зарядами второго.

При
электрическая энергия взаимодействия существенно меньше суммы собственных энергий шаров, однако при изменении расстояния между шарами собственные энергии остаются практически постоянными и изменение полной электрической энергии примерно равно изменению энергии взаимодействия. Этот вывод справедлив не только для проводящих шаров, но и для заряженных тел произвольной формы, расположенных на большом расстоянии друг от друга: приращение электрической энергии системы равно приращению энергии взаимодействия заряженных тел системы:
. Энергия взаимодействия
удаленных друг от друга тел не зависит от их формы и определяется формулой (2).

При выводе формул (1), (2) каждый из точечных зарядов рассматривался как нечто целое и неизменное. Учитывалась только работа, совершаемая при сближении таких неизменных зарядов, но не на их образование. Напротив, при выводе формул (3), (4) учитывалась также работа, совершаемая при нанесении зарядов q i на каждое из тел системы путем переноса электричества бесконечно малыми порциями из бесконечно удаленных точек. Поэтому формулы (3), (4) определяют полную электрическую энергию системы зарядов, а формулы (1), (2) только электрическую энергию взаимодействия точечных зарядов.

Объемная плотность энергии электрического поля

Электрическую энергию плоского конденсатора можно выразить через напряженность поля между его обкладками:

,

где
- объем пространства, занятого полем, S – площадь обкладок, d – расстояние между ними. Оказывается, через напряженность можно выразить электрическую энергию и произвольной системы заряженных проводников и диэлектриков:

, (5)

,

а интегрирование проводится по всему пространству, занятому полем (предполагается, что диэлектрик изотропный и
). Величина w представляет собой электрическую энергию, приходящуюся на единицу объема. Вид формулы (5) дает основания предположить, что электрическая энергия заключена не во взаимодействующих зарядах, а в их электрическом поле, заполняющем пространство. В рамках электростатики это предположение проверить экспериментально или обосновать теоретически невозможно, однако рассмотрение переменных электрических и магнитных полей позволяет удостоверится в правильности такой полевой интерпретации формулы (5).

Принцип суперпозиции.

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряжённостей электрических полей, создаваемых в той же точке зарядами в отдельности:

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции . В соответствии с законом Кулона, напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю:

Это поле называется кулоновским. В кулоновском поле направление вектора напряженности зависит от знака заряда Q: если Q больше 0, то вектор напряженности направлен от заряда, если Q меньше 0, то вектор напряженности направлен к заряду. Величина напряжённости зависит от величины заряда, среды, в которой находится заряд, и уменьшается с увеличением расстояния.

Напряженность электрического поля, которую создает заряженная плоскость вблизи своей поверхности:

Итак, если в задаче требуется определить напряженность поля системы зарядов, то надо действовать по следующему алгоритму:

1. Нарисовать рисунок.

2. Изобразить напряженность поля каждого заряда по отдельности в нужной точке. Помните, что напряженность направлена к отрицательному заряду и от положительного заряда.

3. Вычислить каждую из напряжённостей по соответствующей формуле.

4. Сложить вектора напряжённостей геометрически (т.е. векторно).

Потенциальная энергия взаимодействия зарядов.

Электрические заряды взаимодействуют друг с другом и с электрическим полем. Любое взаимодействие описывает потенциальной энергией. Потенциальная энергия взаимодействия двух точечных электрических зарядов рассчитывается по формуле:

Обратите внимание на отсутствие модулей у зарядов. Для разноименных зарядов энергия взаимодействия имеет отрицательное значение. Такая же формула справедлива и для энергии взаимодействия равномерно заряженных сфер и шаров. Как обычно, в этом случае расстояние r измеряется между центрами шаров или сфер. Если же зарядов не два, а больше, то энергию их взаимодействия следует считать так: разбить систему зарядов на все возможные пары, рассчитать энергию взаимодействия каждой пары и просуммировать все энергии для всех пар.

Задачи по данной теме решаются, как и задачи на закон сохранения механической энергии: сначала находится начальная энергия взаимодействия, потом конечная. Если в задаче просят найти работу по перемещению зарядов, то она будет равна разнице между начальной и конечной суммарной энергией взаимодействия зарядов. Энергия взаимодействия так же может переходить в кинетическую энергию или в другие виды энергии. Если тела находятся на очень большом расстоянии, то энергия их взаимодействия полагается равной 0.

Обратите внимание: если в задаче требуется найти минимальное или максимальное расстояние между телами (частицами) при движении, то это условие выполнится в тот момент времени, когда частицы движутся в одну сторону с одинаковой скоростью. Поэтому решение надо начинать с записи закона сохранения импульса, из которого и находится эта одинаковая скорость. А далее следует писать закон сохранения энергии с учетом кинетической энергии частиц во втором случае.